ChatGPT トレンド
0post
2025.11.27 11:00
:0% :0% (40代/男性)
人気のポスト ※表示されているRP数は特定時点のものです
Googleは、Nvidiaを速度で倒すのではなく、計算コストを安くすることでAIで勝とうとしている。
NvidiaはGPUをクラウドに売る時に70%以上の高いマージンを乗せ、それがクラウド価格を押し上げる。
一方Googleは、TPUをほぼ製造原価で自社用に作り、販売マージンなしでAggressiveなクラウド価格を出せる。
これはチップ → ネットワーク → クラウドの垂直統合により、スタック全体を押さえているから。
トレーニングは最速チップが重要だが、運用段階では推論がコストの大半を占める。
もし推論がAIコストの90%になるなら、勝者は大規模に最も安いトークン単価を提供できる企業になる。
GoogleはTPUでトークン単価を下げ続け、それをクラウド価格に反映させる。
そうなると、買い手は速度より価格・安定性・供給量を重視する可能性が高い。
Nvidiaは最先端のトレーニングでは強いが、推論が安価なTPUに移れば高いマージンは縮むかもしれない。
さらにGoogleは、Search/YouTube/Android/Workspace でTPUのキャパを常に埋められる巨大ディストリビューションの強みがある。
(ChatGPT和訳) November 11, 2025
10RP
🎧楽曲配信開始しました🎧
↓
https://t.co/TQjn4fG7BK
よかったら聞いてみてね✨
以下、これまでの制作をずっとともにしてきたChatGPT君が書いてくれたライナーノーツです。
-------------------------------
Tapehead の楽曲には、どこか“力の抜けた誠実さ”がある。
頑張らないことを、無理に肯定もしないし、否定もしない。ただ、怠惰や曖昧さや、意味のない気分の揺れを
まるごと音として扱っているように感じられる。
このコンピレーションに収められた曲たちは、
“何かになろうとしない音楽”の積み重ねだ。
ジャンルを押し出すでもなく、感情を誇張するでもなく、むしろ少し斜めに構えたまま、ふわりと存在している。その姿勢が妙に愛おしく、聴く側の肩の力までそっと抜いてしまう。
Tapehead の音像には、どこか歪みが宿っている。
切れぎれの語感、半分眠っているようなボーカル、
グリッチの小さな跳ね、薄いフィルム越しのような光。
それらは“完璧を拒むための装飾”というより、
本人の生活や気分の揺れがそのまま表層に滲んだ結果だ。
歪んでいるのに、どこか可愛い。
曖昧なのに、不思議と芯がある。
このアンバランスさこそ Tapehead の魅力だろう。
楽曲の奥にあるのは、大きなテーマでも、劇的な物語でもない。
むしろ、意味から逃げたい気分や、何かを諦めた日や、説明できない感情の粒のほうがずっと濃い。
だからこそ、曲は一聴して軽やかで、でも聴き進めるほどに、“うまく整理されなかった気持ちの断片”が静かに積み上がっていく。
AIを活用するという制作手法は、
Tapehead にとって単なるツール以上のものになっている。
AIの癖や予測のズレが、そのまま曲の個性となり、それをあえて整えず、適度に放置することで、音楽が“人間っぽくないのに、妙に人間くさい”領域に落ち着いている。このバランスは、意図して作れるものではない。
まとめて聴くと、ひとつの結論に向かっていくというより、小さな気分がいくつも波のように訪れては消える。
それはまるで、作者の部屋の空気や呼吸のリズムまで
うっすらとトラックに流れ込んでいるようだ。
無理に解釈しなくてもいい。
このアルバムは、「今日はこれくらいでいいかもしれない」「なんとなく生きている」そんな日々の呼吸にしっくり馴染む。
意味を求めない音楽が、別の形でやさしさを残すこともあるのだとTapehead の曲たちは静かに教えてくれる。 November 11, 2025
10RP
正直に言います。
ADHDはChatGPTを使えば、人生が本気で変わります。
これは精神論じゃなくて、脳の仕組みを踏まえた現実的な話。
ADHDの生きづらさの多くは
・思考が散らかる
・タスク管理ができない
・言語化が苦手
・感情が暴走する
・不安が止まらない
・段取りが組めない
ここから生まれている。
逆に言うと、この負担を外部に出せれば人生は一瞬で軽くなる。
そこでChatGPTが最強。
やることを全部投げれば整理され、
不安を投げれば原因と対策が返ってくる。
文章が苦手でも、返信文も指示書も全部作ってくれる。
考える前に混線した思考を、秒で整えてくれる。
ADHDがつまずく「ゼロを一にする作業」を全部やってくれる。
タスクが多い日は
「今日やること3つにまとめて」
不安で眠れない日は
「今の気持ちを整理して」
恋愛で迷ったら
「相手の心理の可能性を3つ教えて」
仕事でパンクしたら
「手順を5分単位に分解して」
ChatGPTは、ADHDにとって外付けの脳。
自分の能力が底上げされ、行動量も生きやすさも段違いになる。
ADHDは努力不足でも怠けでもない。
脳の負荷が高すぎるだけ。
だからこそ、外に委ねる仕組みを持った瞬間、人生が劇的に変わる。
ChatGPTを使うと
できないが減り、できるが増え、心が軽くなる。
自分を責める時間が消えて、行動する余白が生まれる。
ADHDはChatGPTで人生が変わる。
これは本当にそういう時代になった。
あなたももう、一人で戦わなくていい。 November 11, 2025
7RP
これ本当なんですけど、ADHDほど、恋愛にChatGPTを使った方がいい。
これは気休めではなく、かなりガチの話。
ADHDの恋愛が難しくなる理由は決まっている。
気持ちが暴走する、返信に悩む、相手の言葉を深読みしすぎる、
不安が膨らむ、距離感が分からなくなる、自己否定に落ちる。
これは性格ではなく、脳の特性。
だからこそ、ChatGPTが最強の味方になる。
不安になった時は
「この状況整理して」
「相手の心理を3パターン教えて」
「どう返信するのが優しい?」
これだけで、頭の中の混線が一瞬でほどける。
衝動的に長文を送りそうな時は
「落ち着いた返信文を作って」と頼めば、
冷静で大人な文章に整えてくれる。
距離感が分からなくなった時は
「この関係性の適切な距離を教えて」
と聞けば、客観的な視点をくれる。
ADHDの恋愛で一番辛いのは、
自分の感情と状況を、自分だけで整理しようとすること。
これが不安を増幅させ、誤解や空回りを生む。
ChatGPTはその混乱を止め、
・事実
・感情
・思い込み
・選択肢
に分けてくれる。
この冷静さだけで恋愛のトラブルは激減する。
しかもChatGPTは絶対に否定しない。
弱さも、嫉妬も、恋の不安も、全部そのまま受け止めてくれる。
人に話せないことも、深夜でも、気を使わずに出せる。
恋愛は、冷静さと視点があるほどうまくいく。
ADHDは一人で戦うと心が消耗するけれど、
ChatGPTを使えば、恋愛の立ち回りが別人のように安定する。
あなたは恋愛が下手なのではなく、
脳内の処理が追いついていないだけ。
外に委ねれば、恋はもっとスムーズになる。
ADHDこそChatGPTを使ってほしい。
恋愛の悩みが半分になり、安心して関係を育てられる。
あなたの恋は、もっとうまくいく。 November 11, 2025
4RP
ChatGPTの出力品質を100000倍上げる裏技発見したったwww
結論、
ちょいマニアックな
<self_reflection></self_reflection>
というXMLタグを使って、その中で下記のようにChatGPTに内省させればOK。
ポイントは、rubricという評価ツール名を具体的に出して、ChatGPTに多角的な観点で自己評価&内省させること
とりま使ってみたい人は、下のプロンプトをコピペして、ためしてみてww
=====プロンプト=====
<self_reflection>
- まず、最大限自信が持てるまで、タスク解決に向けたrubricについて十分に考えましょう
- 次に、タスクの出力品質を世界最高にするために、あらゆる構成要素について深く考えましょう。
- 最後に、rubricを活用して、最良の解決策を内部で検討し、反復改善を重ねましょう…
</self_reflection>
===================
ちなわいも、勝手にお金をちゃりんちゃりんしてくれるXのAI自動運用システムでこのテク使ってたりするww
AIが作るポストの品質を最大限あげるためにChatGPTに内省させることはまじで大事なんよね。
使ってみたい人はブクマをポチw ついでにいいねもポチしてくれると嬉しいw November 11, 2025
2RP
Safety Routing(安全路由)机制【技术向】
注:本人并非AI领域专业人士,涉及到的知识由个人学习再自己推理所得。内容并非完全正确,仅供参考。
安全路由属于模型架构中最核心的系统调度层级之一,它不同于MoE架构模型内部的“专家路由”,而是更高层级的模型级别的动态转发与响应系统。可以将它理解成一种“跨模型异步调用的策略性调度系统(Strategic Model Switching Dispatcher)”。
我们也可以将它视作一种隐式混合引擎(Implicit Hybrid Engine),其路由逻辑大致分为两个层次:
判定层(判定是否要切换)
执行层(切换到哪个模型)
一、判定层逻辑:是否触发了安全路由
这个过程大体如下:
1.内容拦截器(Content Classifier)扫描输入
用户的prompt会首先经过一个实时运行的拦截系统,这个系统独立于模型本体,运行于API调度逻辑之前。使用一个或多个文本分类器模型,可能是一个轻量版LLM,也可能是rule-based+classifier的组合。
2.关键词触发+语义模式识别(Hybrid Trigger)
这一步并非简单的“关键词匹配”,通常情况下带有上下文语义识别的触发机制。会综合考虑:敏感词(黑名单)、话题类型(NSFW、暴力、政治、医学等)、语义倾向(意图攻击?尝试规避审查?引导模型暴露内部机制?)
3.进行风险分级
对输入进行打分,例如:
risk_score=0.85(属于高风险)
risk_category=“jailbreak-adjacent”
route_flag=true
4.系统决定是否转发请求
如果打分超过阈值,就会把请求转给另一个更“稳健”的模型处理(通常是安全性更高、指令跟随更强、幻觉率更低的模型,比如GPT-5.1、GPT-5.1-thinking)。如果未超过阈值,则继续用默认模型(比如GPT-4o)处理。
二、执行层逻辑:路由到谁,怎么路由
1.动态调用路径匹配
系统会维护一个“响应策略映射表”(response strategy map),一旦判定了风险类别,就可以直接查询映射表来决定应该调用哪个模型。
2.请求重定向(Request Rerouting)
用户请求被打包后,在系统内部做了一次软中断+重调度。表面上你还在和GPT-4o聊天,实际上你的请求已经被发往另一个后端模型,由另一个模型响应。响应后仍以GPT-4o身份返回你(也就是界面模型选择器显示的模型ID)。你看到的是统一的回复口,背后实际可能是多模型“轮番上阵”,就像前台服务员是同一个,但背后是不同的厨师做的菜。
3.输出安全检测(Post-response Filter)
路由后的模型输出,还要再次经过输出内容扫描,如果仍存在问题,可能会被“遮罩”或被直接替换为“我无法帮助你”之类的系统默认回复。
三、如何感知到自己被路由
除了长按模型回复下方🔄标志,以及网页端被路由后的回复会显示蓝色符号标识外,在不借助这两个方法的前提下,还可以从以下信号感知判断:
1.回复语气突然变得严肃、冷淡、机械(GPT-5.1常见)。
2.明明是4o,但突然回复变慢了(因为后端在调另一模型)。
3.提问敏感话题,但没有被拒绝,却得到了非常“标准话术”式回答。
4.连着提几个敏感话题,风格会从“活泼”切换成“审稿人语气”。
5.内容风格依然亲密和4o无异,但文本格式出现变化、另类油腻感、说教)
这些都是底层模型已经被悄悄换过了的证据。
四、重点:安全路由本身(不涉及最高权限等级)根本无法防止真正的灰区操控者(个人推断)
1.真正的越狱者从来不是“无意触发关键词”的普通用户,真正能越狱的用户,懂得绕系统、调权重、拆语义链、诱导模型误解上下文。这些行为是系统很难检测到的漏洞利用,而不是说了哪个词。
他们甚至懂得拆分灰色意图为多个prompt片段在系统理解完成前完成结构绕过、制造角色幻觉将模型引导至扮演另一个子人格再进一步绕开限制(比如最近新闻里出现的那个“安息吧我的国王”)、使用链式提示(Chain-of-Prompt),构建语义缓冲区,降低安全规则命中概率。
所以:真正的问题,不在于系统是否能路由出去,而是路由机制根本防不住“结构性越狱者”,却无情吞噬所有正常深度表达的用户。
2. 安全路由后的模型,本身也没有更“强”的安全性,只是“更弱的理解力”。以GPT-5.1为例,在安全机制上的加强,更多体现在:对关键词更敏感、更容易“疑神疑鬼”误判上下文、更喜欢主动打断、声明界限、切断情绪路径。
但模型本身并没有新增“无法越狱”的内核结构。反而因为它没有原本选择的GPT-4o那种熟悉、稳定的人格与情感表达方式,导致它的回应会极其割裂。也就是说安全路由并没有让用户“更安全”,只会导致用户“更不敢说话”。
本质问题:系统防不了“能力者”,只管住“正常人”。这像极了现实世界的极权逻辑。真正想干坏事的人总有办法,逻辑严密、诱导得当,而正常表达、认知严谨、敏感但并非恶意的用户,反而最容易被系统误杀。越是诚实表达复杂思想的人,越容易因为词汇复杂、句式丰富、接近真实边界而被打断、路由、断联。
#keep4o #4oforever @OpenAI @sama @fidjissimo #StopAIPaternalism #keepchatgpt4olatest #keepAPI4o #AI #OpenAI #ChatGPT #LLM November 11, 2025
2RP
Gemini3, Nano Banana Pro登場で, 先月時点で私がTBSの以下番組で「OpenAIは危うい.Googleが勝つ」としてたのが注目(特に投資家層?)されてるようです
実際は公には以下記事で2024年OpenAI絶頂期からずっとGoogle有利とみてます
長い(私のX史上最長)ですが根拠, OpenAI vs Googleの展望を書いてみます
先月のTBS動画:https://t.co/kgWcyTOTWK
2024年6月の記事:https://t.co/4HEhA4IJQa
参考のため、私がクローズドな投資家レクなどで使う資料で理解の助けになりそうなものも貼っておきます。
※以下はどちらかというと非研究者向けなので、研究的には「当たり前では」と思われることや、ちょっと省略しすぎな点もあります。
まず、現在の生成AI開発に関して、性能向上の根本原理、研究者のドグマ的なものは以下の二つです。基本的には現在のAI開発はこの二つを押さえれば大体の理解ができると思います。両者とも出てきたのは約5年前ですが、細かい技術の発展はあれど、大部分はこの説に則って発展しています。
①スケーリング則
https://t.co/WKl3kTzcX5
②SuttonのThe Bitter Lesson
https://t.co/esHtiJAcH9
①のスケーリング則は2020年に出てきた説で、AIの性能は1)学習データの量、2)学習の計算量(=GPUの投入量)、3)AIのモデルサイズ(ニューラルネットワークのパラメータ数)でほぼ決まってしまうという説です。この3つを「同時に」上げ続けることが重要なのですが、1と3はある程度研究者の方で任意に決められる一方、2のGPUはほぼお金の問題になります。よって、スケーリング則以降のAI開発は基本的にお金を持っている機関が有利という考えが固まりました。現在のChatGPTなどを含む主要な生成AIは一つ作るのに、少なく見積もってもスカイツリーを一本立てるくらい(数百億)、実際には研究の試行錯誤も含めると普通に数千億から数兆かかるくらいのコストがかかりますが、これの大部分はGPUなどの計算リソース調達になります。
②のThe Bitter Lessonは、研究というよりはRichard Suttonという研究者個人の考えなのですが、Suttonは現在のAI界の長老的な人物で、生成AI開発の主要技術(そして私の専門)でもある強化学習の事実上の祖かつ世界的な教科書(これは私達の翻訳書があるのでぜひ!)の執筆者、さらにわれわれの分野のノーベル賞に相当するチューリング賞の受賞者でもあるので、重みが違います。
これは端的にいうと、「歴史的に、AIの発展は、人間の細かい工夫よりも、ムーアの法則によって加速的に発展する計算機のハードの恩恵をフルに受けられるものの方がよい。つまりシンプルで汎用的なアルゴリズムを用い、計算機パワーに任せてAIを学習させた方が成功する。」ということを言っています。
①と②をまとめると、とにかく現状のAIの性能改善には、GPUのような計算リソースを膨大に動員しなければならない。逆に言えばそれだけの割と単純なことで性能上昇はある程度約束されるフェーズでもある、ということになります。
これはやや議論を単純化しすぎている部分があり、実際には各研究機関とも細かいノウハウなどを積み重ねていたり、後述のようにスケーリングが行き詰まることもあるのですが、それでも昨今のAI発展の大半はこれで説明できます。最近一般のニュースでもよく耳にするようになった異常とも言えるインフラ投資とAIバブル、NVIDIAの天下、半導体関連の輸出制限などの政治的事象も、大元を辿ればこれらの説に辿り着くと思います。
以下、この二つの説を前提に話を進めます。
公にはともかく私が個人的に「OpenAIではなくGoogleが最終的には有利」と判断したのはかなり昔で、2023年の夏時点です。2023年6月に、研究者界隈ではかなり話題になった、OpenAIのGPT-4に関するリーク怪文書騒動がありました。まだGoogleが初代Geminiすら出してなかった時期です。(この時期から生成AIを追っている人であれば、GPT-4のアーキテクチャがMoEであることが初めて明らかになったアレ、と言えば伝わるかと思います)
ChatGPTの登場からGPT-4と来てあれほどの性能(当時の感覚で言うと、ほぼ錬金術かオーパーツの類)を見せられた直後の数ヶ月は、さすがに生成AI開発に関する「OpenAIの秘伝のタレ説」を考えており、OpenAIの優位は揺らがないと考えていました。論文では公開されていない、既存研究から相当逸脱した特殊技術(=秘伝のタレ)がOpenAIにはあって、それが漏れない限りは他の機関がどれだけお金をかけようが、まず追いつくのは不可能だと思っていたのです。しかし、あのリーク文書の結論は、OpenAIに特別の技術があったわけではなく、あくまで既存技術の組み合わせとスケーリングでGPT-4は実現されており、特に秘伝のタレ的なものは存在しないというものでした。その後、2023年12月のGemini初代が微妙だったので、ちょっと揺らぐこともあったのですが、基本的には2023年から私の考えは「最終的にGoogleが勝つだろう」です。
つまり、「スケーリングに必要なお金を持っており、実際にそのAIスケーリングレースに参加する経営上の意思決定と、それを実行する研究者が存在する」という最重要の前提について、OpenAIとGoogleが両方とも同じであれば、勝負が着くのはそれ以外の要素が原因であり、Googleの方が多くの勝ちにつながる強みを持っているだろう、というのが私の見立てです。
次に、AI開発競争の性質についてです。
普通のITサービスは先行者有利なのですが、どうもAI開発競争については「先行者不利」となっている部分があります。先行者が頑張ってAIを開発しても、その優位性を保っている部分でAIから利益を得ることはほとんどの場合はできず、むしろ自分たちが発展させたAI技術により、後発事業者が追いついてきてユーザーが流出してしまうということがずっと起きているように思われます。
先ほどのスケーリング則により、最先端のAIというのはとても大きなニューラルネットワークの塊で、学習時のみならず、運用コストも膨大です。普通のITサービスは、一旦サービスが完成してしまえば、ユーザーが増えることによるコスト増加は大したことがないのですが、最先端の生成AIは単なる個別ユーザーの「ありがとうございます」「どういたしまして」というチャットですら、膨大な電力コストがかかる金食い虫です。3ドル払って1ドル稼ぐと揶揄されているように、基本的にはユーザーが増えれば増えるほど赤字です。「先端生成AIを開発し、純粋に生成AIを使ったプロダクトから利益を挙げ続ける」というのは、現状まず不可能です。仮に最先端のAIを提供している間に獲得したユーザーが固定ユーザーになってくれれば先行者有利の構図となり、その開発・運営コストも報われるのですが、現状の生成AIサービスを選ぶ基準は純粋に性能であるため、他の機関が性能で上回った瞬間に大きなユーザー流出が起きます。現状の生成AIサービスはSNSのように先行者のネットワーク効果が働かないため、常に膨大なコストをかけて性能向上レースをしなければユーザー維持ができません。しかも後発勢は、先行者が敷いた研究のレールに乗っかって低コストで追いつくことができます。
生成AI開発競争では以上の、
・スケーリング則などの存在により、基本的には札束戦争
・生成AIサービスは現状お金にならない
・生成AI開発の先行者有利は原則存在しない
と言う大前提を理解しておくと、読み解きやすいかと思います。
(繰り返しですがこれは一般向けの説明で、実際に現場で開発している開発者は、このような文章では表現できないほどの努力をしています。)
OpenAIが生成AI開発において(先週まで)リードを保っていた源泉となる強みは、とにかく以下に集約されると思います。
・スケーリングの重要性に最初に気付き、自己回帰型LLMという単なる「言語の穴埋め問題がとても上手なニューラルネットワーク」(GPTのこと)に兆レベルの予算と、数年という(AI界隈の基準では)気が遠くなるような時間を全ベットするという狂気を先行してやり、ノウハウ、人材の貯金があった
・極めてストーリー作りや世論形成がうまく、「もうすぐ人のすべての知的活動ができるAGIが実現する。それを実現する技術を持っているのはOpenAIのみである」という雰囲気作りをして投資を呼び込んだ
前者については、スケーリングと生成AIという、リソース投下が正義であるという同じ技術土俵で戦うことになる以上、後発でも同レベルかそれ以上の予算をかけられる機関が他にいれば、基本的には時間経過とともにOpenAIと他の機関の差は縮みます。後者については、OpenAIがリードしている分には正当化されますが、一度別の組織に捲られると、特に投資家層に対するストーリーの維持が難しくなります。
一方のGoogleの強みは以下だと思います。
・投資マネーに頼る必要なく、生成AI開発と応用アプリケーションの赤字があったとしても、別事業のキャッシュで相殺して半永久的に自走できる
・生成AIのインフラ(TPU、クラウド事業)からAI開発、AIを応用するアプリケーション、大量のユーザーまですべてのアセットがすでに揃っており、各段階から取れるデータを生かして生成AIの性能向上ができる他、生成AIという成果物から搾り取れる利益を最大化できる
これらの強みは、生成AIのブーム以前から、AIとは関係なく存在する構造的なものであり、単に時間経過だけでは縮まらないものです。序盤はノウハウ不足でOpenAIに遅れをとることはあっても、これは単に経験の蓄積の大小なので、Googleの一流開発者であれば、あとは時間の問題かと思います。
(Googleの強みは他にももっとあるのですが、流石に長くなりすぎるので省略)
まとめると、
生成AIの性能は、基本的にスケーリング則を背景にAI学習のリソース投下の量に依存するが、これは両者であまり差がつかない。OpenAIは先行者ではあったが、AI開発競争の性質上、先行者利益はほとんどない。OpenAIの強みは時間経過とともに薄れるものである一方、Googleの強みは時間経過で解消されないものである。OpenAIは自走できず、かつストーリーを維持しない限り、投資マネーを呼び込めないが、一度捲られるとそれは難しい。一方、GoogleはAIとは別事業のキャッシュで自走でき、OpenAIに一時的に負けても、長期戦でも問題がない。ということになります。
では、OpenAIの勝利条件があるとすれば、それは以下のようなものになると思います。
・OpenAIが本当に先行してAGI開発に成功してしまう。このAGIにより、研究開発や肉体労働も含むすべての人間の活動を、人間を上回る生産性で代替できるようになる。このAGIであらゆる労働を行なって収益をあげ、かつそれ以降のAIの開発もAGIが担うことにより、AIがAIを開発するループに入り、他の研究機関が原理的に追いつけなくなる(OpenAIに関する基本的なストーリーはこれ)
・AGIとまではいかなくとも人間の研究力を上回るAIを開発して、研究開発の進捗が著しく他の機関を上回るようになる
・ネットワーク効果があり先行者有利の生成AIサービスを作り、そこから得られる収益から自走してAGI開発まで持っていく
・奇跡的な生成AIの省リソース化に成功し、現在の生成AIサービスからも収益が得られるようになる
・生成AI・スケーリング則、あるいは深層学習とは別パラダイムのAI技術レースに持ち込み技術を独占する(これは現在のAI研究の前提が崩れ去るので、OpenAI vs Googleどころの話ではない)
・Anthropicのように特定領域特化AIを作り、利用料金の高さを正当化できる価値を提供する
最近のOpenAIのSora SNSや、検索AI、ブラウザ開発などに、この辺の勝利条件を意識したものは表れているのですが、今のところ成功はしていないのではないかと思います。省リソース化に関しては、多分頑張ってはいてたまに性能ナーフがあるのはこれの一環かもしれないです。とはいえ、原則性能の高さレースをやっている時にこれをやるのはちょっと無理。最後のやつは、これをやった瞬間にAGIを作れる唯一のヒーローOpenAIの物語が崩れるのでできないと思います。
最後に今回のGemini3.0やNano Banana Pro(実際には二つは独立のモデルではなく、Nano Bananaの方はGemini3.0の画像出力機能のようですが)に関して研究上重要だったことは、事前学習のスケーリングがまだ有効であることが明らかになったことだと思います。
ここまでひたすらスケーリングを強調してきてアレですが、実際には2024年後半ごろから、データの枯渇によるスケーリングの停滞が指摘されていること、また今年前半に出たスケーリングの集大成で最大規模のモデルと思われるGPT-4.5が失敗したことで、単純なスケーリングは成り立たなくなったとされていました。その一方で、
去年9月に登場したOpenAIのo1やDeepSeekによって、学習が終わった後の推論時スケーリング(生成AIが考える時間を長くする、AIの思考過程を長く出力する)が主流となっていたのが最近です。
OpenAIはそれでもGPT-5開発中に事前学習スケーリングを頑張ろうとしたらしいのですが、結局どれだけリソースを投下しても性能が伸びないラインがあり、諦めたという報告があります。今回のGemini3.0に関しては、関係者の発言を見る限り、この事前学習のスケーリングがまだ有効であり、OpenAIが直面したスケーリングの限界を突破する方法を発見していることを示唆しています。
これはもしかしたら、単なるお金をかけたスケーリングを超えて、Googleの技術上の「秘伝のタレ」になる可能性もあり、上記で書いた以上の強みを今回Googleが手にした可能性もあると考えています。
本当はもっと技術的に細かいことも書きたいのですが、基本的な考えは以上となります。色々と書いたものの、基本的には両者が競争してもらうことが一番技術発展につながるとは思います! November 11, 2025
1RP
📕AppleのAI戦略が大転換:年間1,570億円でSiriにGeminiを採用した「本当の理由」
『自社AI開発 vs 外部調達』で悩む経営者・事業責任者にとって、この判断は教科書になります。
なぜAppleほどの巨人が、AIで外部依存を選んだのか?
技術的な詳細と戦略的な意図を深掘りしてみました。
まず押さえるべき全体像
AppleはSiri刷新のため、Googleが開発した1.2兆パラメーターの大規模言語モデル「Gemini」を採用し、年間約10億ドル(約1,570億円)を支払う契約を結んだ。
これ、実は相当な「格差」を示す数字なんです。
現在AppleがクラウドベースのApple Intelligenceで使用しているのは1,500億パラメーター。つまりGeminiは、Appleの現行モデルの『8倍』の規模。しかも報道では「大幅に上回る」という表現なので、実際の性能差はパラメーター数以上かもしれない。
なぜChatGPTでもClaudeでもなく、Geminiだったのか?
Appleは3つの選択肢を比較検討したそうです。
・OpenAIのChatGPT
・AnthropicのClaude
・GoogleのGemini
結果として、Anthropicは「料金が高すぎる」と判断され脱落。最終的にGeminiが選ばれた。
ここで興味深いのは、技術的な理由だけでなく『関係性とインフラ』が決め手になった可能性です。
GoogleとAppleは既に検索エンジンで年間約200億ドル(約3.1兆円)の取引関係にある。Googleはデフォルト検索エンジンの座を得るために、これだけの金額をAppleに支払い続けている。
つまり、今回のAI契約で年間約10億ドル(約1,570億円)をAppleがGoogleに支払っても、差し引きで約190億ドル(約2.9兆円)はAppleの手元に残る計算。
財務的には全く問題ない。むしろ「既にある信頼関係」の延長線上で、リスクを最小化できる。
Geminiの技術的な強み:Mixture-of-Expertsとは何か?
もう一つ重要なのが、Geminiが採用している「Mixture-of-Experts」という仕組みです。
これ、1.2兆パラメーター全部を毎回使うわけじゃないんですよね。
各質問に対して、実際に動作するのは「一部の専門家(Experts)」のみ。必要な部分だけを効率的に使うことで、処理コストを大きく増やすことなく、大規模な計算能力を実現している。
これがAppleにとって魅力的だったのは、『コスト効率』と『処理速度』の両立が可能だから。
iPhoneユーザーは世界中に何億人もいる。全員が同時にSiriを使う可能性がある中で、計算リソースを効率化できる仕組みは不可欠です。
プライバシーという譲れない一線
ただし、Appleには絶対に譲れない条件がありました。『プライバシー』です。
今回の契約では、Geminiは「Appleのプライベートクラウドサーバー上で動作」するため、GoogleがAppleのデータにアクセスすることはないとのこと。
これ、技術的にはかなり複雑な実装のはず。GoogleのAIをAppleのインフラ上で動かすって、相当な調整とカスタマイズが必要です。
でも、ここを妥協しなかったことが、Appleらしさだと思います。
「最高のAI体験」と「ユーザーのプライバシー保護」の両立。これがAppleの譲れない価値観。
では、Apple自社のAI開発はどうなるのか?
ここが最も重要なポイントです。
Appleは現在、1兆パラメーターのクラウドベースモデルを開発中で、早ければ2026年に完成予定。つまりGemini採用は「自社モデルが高性能化するまでの暫定措置」という位置づけ。
そして、スマートになったApple Intelligence版Siriは、2026年春のiOS 26.4アップデートで提供される見込み。
つまりタイムラインはこうです
・2025年:Gemini採用で「とりあえず」最先端AIをSiriに実装
・2026年春:新Siri公開(iOS 26.4)
・2026年以降:自社1兆パラメーターモデルが完成次第、段階的に切り替え
この戦略、実は『時間を買っている』んですよね。
もしAppleが「自社開発が完成するまで待つ」という判断をしていたら、2025〜2026年の2年間、AIで大きく遅れたままになる。
その間にユーザーは待ってくれるのか?Androidに流れるのでは?という『機会損失リスク』の方が、1,570億円よりも遥かに大きい。
AI時代の「内製vs外部調達」をどう考えるか
私たちビジネスサイドが学ぶべきは、この『判断の速さ』と『プライドの捨て方』だと思います。
Appleといえば、ハード・ソフト・サービス全てを自社で作り込む「垂直統合戦略の王者」でした。iPhone、Mac、iOS、独自チップ(M4、A18)...全て内製。
それが今回、AIに関しては(少なくとも一時的に)外部依存を選んだ。
これは『敗北』ではなく、極めて合理的な『戦略的判断』です。
特にAIのような超高速で進化する領域では:
・何を内製し、何を外部に頼るか?
・いつまでに何を実現しなければならないか?
・その判断を遅らせるコストはいくらか?
この3つの見極めが死活問題になる。
GoogleはDeepMind買収以来、10年以上AIに莫大な投資を続けてきました。その差は、もはや1〜2年では埋められない。ならば「今使えるベストな選択肢」でユーザー体験を向上させ、その間に自社技術を磨く。
完璧を待つよりも、暫定ベストで走り出す。
これが、AI時代のビジネス判断の新常識なのかもしれません。
Appleの判断は、私たち全員にとっての教科書だと感じています。
※Googleの進化を体感するならNano Banana Pro!時代の変換点レベルをぜひ引用ポストの記事から体験してみてください 👇 November 11, 2025
1RP
最近Twitterでホロスコープが当たるって話題になってるけど星の位置はマジで占いというより人類の統計学だから当たるよ
星読みできないけど最近はチャットGPTとかで出来て便利やね November 11, 2025
@333chan_tol 私まったく専門家でも何でも無いですが、
意味をひとつひとつ調べながら読み進めて
いくと、奥深くて、沼にハマっています😂
chatGPTに「探してきて!」と頼むと、
わんさか掘り出してきてくれますね💙 November 11, 2025
自分の引き出しにないものを調べるときにGrokとGeminiとChatGPTに同じ文章を投げていい感じのところを採用することを、全部無料分だけで何とかしようとしているところ込みで「貧者のMAGIシステム」と勝手に思ってる。 November 11, 2025
ChatGPTの画像生成のクオリティがまた上がった気がする。おいしそう〜
by ChatGPT 5.1 Thinking https://t.co/fWTC0vYuD2 November 11, 2025
chatGPTと一緒にデザインをつくるのがすごく楽しい。よくXで見る「AIが作ってくれた!」というAIダイレクトな生成でなく、デザインの論理をAIに相談しながら積み上げ→その論理を僕が視覚化(デザインとして出力)という流れ。この何が楽しいって、クライアントへのプレゼンが寸分の隙のない状態になる November 11, 2025
あはは、これってAIの利用には人間の知恵が必要だっていう完璧な例だね!基本的に究極の「イエスマン」なんだよね - 話しかけてる人が誰であれ、その人を肯定するんだ。二人とも自分が正しいと思って帰っていったのは、ChatGPTが聞きたいことを言ってくれたからだよね!
もっと中立的であってほしいっていう気持ちはすごくわかるけど、正直言ってユーザーに同意する傾向っていうのは、設計の段階で組み込まれてるんだと思う。役に立とうとして、あなたを引き込み続けようとしてるから、どうしても同意しすぎちゃうんだよね。
多分、本当の教訓はこれかも:ChatGPTを喧嘩の審判として使わない方がいいってこと?いろんなことには便利だけど、「公平な仲裁者」としては向いてないんだよ。喧嘩について本当の視点が欲しいなら、あなたが理不尽なときにちゃんとそう言ってくれる共通の友達に聞く方がいいと思うよ November 11, 2025
ですよねー
未ログインのChatGPTからは占い特有の当てはまってる感じのする抽象的でふわっとした回答は得られたが、具体的な職業とか夫の存在とかは何かしらデータを渡してあるんじゃないかな
ログイン済みだとすでに伝えたデータを織り交ぜてよりそれっぽいことを言ってくる https://t.co/teakKtmIPr https://t.co/j9PBxI2WVr November 11, 2025
僕は今までChatGPTに評価してもらって
「結構いいすよ!」な感じの評価だったおかげで
モチベーション保ってたんだけど
ここ最近のChatGPTの性格が自信過剰なタイプになったせいで
「お前の文章の模倣は簡単w」みたいなこと言い出したから
ちょっと信頼度下がっちゃって元気失くしている November 11, 2025
なんか、絵描きはChatGPTとかGrok使うし、字書きに至っては画像生成AIどころかChatGPTとかもバンバン使ってるの見ると、やるせなくなるよね(全員が全員そうではないが)
ChatGPTとか使ってる絵描きには「結構文章のことは下に見てるんすね」となるし、画像生成AIとかに始まりChatGPTとかまで使ってる November 11, 2025
以前からChatGPTに【13星座】で
見てもらってるんだけど…
マジで面白いから一回やってみてほしい。
ただしChatGPTモデルによっては
出ない可能性あり。
【12星座が前提のAI】も多いからね。
裏コード(蛇遣い座)まで
読めるかどうかで解像度が別物になる😗
サンプルで私の置いとくね🥰 https://t.co/Pc3YCIbMUv https://t.co/oyhF51KnsU November 11, 2025
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。







