生成AI トレンド
0post
2025.11.26 22:00
:0% :0% (40代/男性)
人気のポスト ※表示されているRP数は特定時点のものです
ホビージャパン
オラザク選手権楽しく読んでるけど
←の落書きに生成AI使うと
ほんの数秒で
→の画像になっちゃうから
写真を使ったコンテストは
生成AIを見抜く
真贋AI的なモノが無いと
難しい時代になっちゃったかなあ
とか思うよ https://t.co/xWsh9fBqiM November 11, 2025
108RP
【生成AIは何十億もの海賊版データを基に開発されており、本来の権利者への許諾や利用料の踏み倒しが根本的な問題】ってことがもっと周知されて欲しい
クリーンに開発されているミツア(左)と比較するとご覧の通り
権利侵害しないと高品質な出力ができないので、技術の進歩でも何でもないんです https://t.co/dXdDNM2DNx https://t.co/vYEWtrBgcM November 11, 2025
44RP
TRPGや“なりチャ”を文章生成AIでデジタル化した
令和最新ごっこ遊びゲーム
『サーガ&シーカー』発表記念!
ゲーミングPCを1名様にプレゼント!
1. @denfaminicogame
2. @Saga_and_Seeker
をフォロー&RPで応募完了
さらに引用元のポストをRP/いいねすると当選確率がアップ!
https://t.co/VpsEeKpikf https://t.co/uv6sRxYV3l November 11, 2025
32RP
これで生成AIを叩いてる人は本質が見えてないので二度と口を開かないでほしい。
こっちは9年前の熊本地震でライオンが脱走したってガセネタ拡散したやついたの一生忘れねえからな。 https://t.co/iiwT3n8U8K November 11, 2025
29RP
やりたいことをチャットに入力するだけで、文章生成AIがどんな無茶振りも(たぶん)物語にしてくれるRPG『サーガ&シーカー』発表!
https://t.co/x0ztTJs2ma
キャラとの会話で進む"文字だけ"RPG。
どんなキャラも創れるし、どんな物語も紡げる、無限の展開を楽しめるキャラ遊びの令和最新版がここに https://t.co/F4RiBddGEg November 11, 2025
26RP
反応遅いんじゃなくて、最近ボイスコミックが出たから表面化しただけでね。
ってか、生成AI信者の言う「反AI」多過ぎるだろ…
しかも、これは最早「犬笛」ではないよね。
思いっきり笛。それも「警笛」だろう。 https://t.co/16063jLRjB November 11, 2025
20RP
これに対して、
「生成AIで作られた映像じゃないか心配? なるほどなるほど」
「でもそれって、生成AIじゃなければ、第三者の映像を無断転載したやつじゃありませんか?」
「そう、あなた達が大嫌いなはずの無断転載です」
と皮肉る感じの引用RTがあって草生えました。 https://t.co/kPP5Ius8wg November 11, 2025
19RP
「ちゃんとプロフィールにAI表記をしている!!」
use Stable Diffusion, Affinity Designer
これですぐ生成AIって分かるの生成AIユーザーくらいでしょw
「絵 愛」←これでAIと読ませようとしてた奴よりかはマシだが November 11, 2025
18RP
ヤングジャンプの新人賞で生成AIが疑われてる奴、キャラクターの会話がめちゃくちゃなので単純に読み辛く、こんなので受かるくらい全体のレベルが落ちてんのか?と不安になる。それくらい会話劇がめちゃくちゃだった。 November 11, 2025
12RP
ご質問ありがとうございます。長いです。
まず結論から言うと
「悪用する人が増えたなら情報発信者に問題がある」と思います。責任は悪用した側です。
オレオレ詐欺をご存知でしょうか?
昔からある典型的な詐欺でテレビなどでよく話題にされその手口が詳細に語られました。
それにより、
「あ、これテレビで言ってた詐欺だ!」と気づいて被害を未然に防げることもあれば、
「この手口いいな!俺も真似して詐欺やろっと!」と実行する人もいたと思います。
これによりオレオレ詐欺を真似する人が爆増して被害者が増えたらテレビに問題があるかもしれません。
でも実際は平成16年がピークでそれ以降下がってるようですのでこの情報公開は意味があったと思います。
でも公開した情報が「ピッキングの方法」だったらどうでしょう?この情報公開によってできる防衛手段があまりないため、被害者が増えるだけになりますよね。
これはもうダメダメだと思います。
さてここで生成AIの話に戻します。
すこすこ侍さんからすると僕の情報公開は「犯罪者予備軍に犯罪する手段を教えてるだけ」に見えるかもしれません。
そこに大きな嫌悪が生まれてるのだと思います。
そこは尊重します。否定もしません。
ただ僕は「生成AIで何ができるか」を知ることで「生成AIでできないもの」も知ることができると思っていて、そこが生存戦略に繋がると思っています。
活用するかどうかはおいといて生成AIを知ることで生成AIと被らない活動手段を選択できると思うのです。
少し本題からずれますが、「先に法整備を!」という考えも否定しませんが、そもそも今現在悪用している人たちはモラルが欠けているので法律ができたところで悪用します。無駄だとは思ってませんが、時間がかかりすぎると思います。
なので生存戦略と同時に推し進めていくのがベターだと思ってます。
最後にここまで読んでくれてありがとうございました。
すこすこ侍さんのように丁寧に質問してくれる方が増えると嬉しいです。 November 11, 2025
7RP
生成AI推進派さ、「数年後にSNSでAI製カラー漫画が溢れた時、白黒の漫画ばかりが並んでいる商業サイトがユーザーの目にどう映るか」って話よりも、「今」生成AI漫画ばかりが並んでいる商業サイトが読者からどう見られるかを考えたほうがいいのでは?
そもそもモノクロにはモノクロの美学があるんだよ November 11, 2025
6RP
クマの件で根本的に考え違いをしてるのは「だから生成AIは規制しなければならない」ではなく「だからフェイクに対する厳罰化や対策をしなければならない」だってことだよ
人の手によるデマでも同じことは起こり得るのになんでそこの脆弱性を残したままにしようとするのよ November 11, 2025
5RP
Gemini3, Nano Banana Pro登場で, 先月時点で私がTBSの以下番組で「OpenAIは危うい.Googleが勝つ」としてたのが注目(特に投資家層?)されてるようです
実際は公には以下記事で2024年OpenAI絶頂期からずっとGoogle有利とみてます
長い(私のX史上最長)ですが根拠, OpenAI vs Googleの展望を書いてみます
先月のTBS動画:https://t.co/kgWcyTOTWK
2024年6月の記事:https://t.co/4HEhA4IJQa
参考のため、私がクローズドな投資家レクなどで使う資料で理解の助けになりそうなものも貼っておきます。
※以下はどちらかというと非研究者向けなので、研究的には「当たり前では」と思われることや、ちょっと省略しすぎな点もあります。
まず、現在の生成AI開発に関して、性能向上の根本原理、研究者のドグマ的なものは以下の二つです。基本的には現在のAI開発はこの二つを押さえれば大体の理解ができると思います。両者とも出てきたのは約5年前ですが、細かい技術の発展はあれど、大部分はこの説に則って発展しています。
①スケーリング則
https://t.co/WKl3kTzcX5
②SuttonのThe Bitter Lesson
https://t.co/esHtiJAcH9
①のスケーリング則は2020年に出てきた説で、AIの性能は1)学習データの量、2)学習の計算量(=GPUの投入量)、3)AIのモデルサイズ(ニューラルネットワークのパラメータ数)でほぼ決まってしまうという説です。この3つを「同時に」上げ続けることが重要なのですが、1と3はある程度研究者の方で任意に決められる一方、2のGPUはほぼお金の問題になります。よって、スケーリング則以降のAI開発は基本的にお金を持っている機関が有利という考えが固まりました。現在のChatGPTなどを含む主要な生成AIは一つ作るのに、少なく見積もってもスカイツリーを一本立てるくらい(数百億)、実際には研究の試行錯誤も含めると普通に数千億から数兆かかるくらいのコストがかかりますが、これの大部分はGPUなどの計算リソース調達になります。
②のThe Bitter Lessonは、研究というよりはRichard Suttonという研究者個人の考えなのですが、Suttonは現在のAI界の長老的な人物で、生成AI開発の主要技術(そして私の専門)でもある強化学習の事実上の祖かつ世界的な教科書(これは私達の翻訳書があるのでぜひ!)の執筆者、さらにわれわれの分野のノーベル賞に相当するチューリング賞の受賞者でもあるので、重みが違います。
これは端的にいうと、「歴史的に、AIの発展は、人間の細かい工夫よりも、ムーアの法則によって加速的に発展する計算機のハードの恩恵をフルに受けられるものの方がよい。つまりシンプルで汎用的なアルゴリズムを用い、計算機パワーに任せてAIを学習させた方が成功する。」ということを言っています。
①と②をまとめると、とにかく現状のAIの性能改善には、GPUのような計算リソースを膨大に動員しなければならない。逆に言えばそれだけの割と単純なことで性能上昇はある程度約束されるフェーズでもある、ということになります。
これはやや議論を単純化しすぎている部分があり、実際には各研究機関とも細かいノウハウなどを積み重ねていたり、後述のようにスケーリングが行き詰まることもあるのですが、それでも昨今のAI発展の大半はこれで説明できます。最近一般のニュースでもよく耳にするようになった異常とも言えるインフラ投資とAIバブル、NVIDIAの天下、半導体関連の輸出制限などの政治的事象も、大元を辿ればこれらの説に辿り着くと思います。
以下、この二つの説を前提に話を進めます。
公にはともかく私が個人的に「OpenAIではなくGoogleが最終的には有利」と判断したのはかなり昔で、2023年の夏時点です。2023年6月に、研究者界隈ではかなり話題になった、OpenAIのGPT-4に関するリーク怪文書騒動がありました。まだGoogleが初代Geminiすら出してなかった時期です。(この時期から生成AIを追っている人であれば、GPT-4のアーキテクチャがMoEであることが初めて明らかになったアレ、と言えば伝わるかと思います)
ChatGPTの登場からGPT-4と来てあれほどの性能(当時の感覚で言うと、ほぼ錬金術かオーパーツの類)を見せられた直後の数ヶ月は、さすがに生成AI開発に関する「OpenAIの秘伝のタレ説」を考えており、OpenAIの優位は揺らがないと考えていました。論文では公開されていない、既存研究から相当逸脱した特殊技術(=秘伝のタレ)がOpenAIにはあって、それが漏れない限りは他の機関がどれだけお金をかけようが、まず追いつくのは不可能だと思っていたのです。しかし、あのリーク文書の結論は、OpenAIに特別の技術があったわけではなく、あくまで既存技術の組み合わせとスケーリングでGPT-4は実現されており、特に秘伝のタレ的なものは存在しないというものでした。その後、2023年12月のGemini初代が微妙だったので、ちょっと揺らぐこともあったのですが、基本的には2023年から私の考えは「最終的にGoogleが勝つだろう」です。
つまり、「スケーリングに必要なお金を持っており、実際にそのAIスケーリングレースに参加する経営上の意思決定と、それを実行する研究者が存在する」という最重要の前提について、OpenAIとGoogleが両方とも同じであれば、勝負が着くのはそれ以外の要素が原因であり、Googleの方が多くの勝ちにつながる強みを持っているだろう、というのが私の見立てです。
次に、AI開発競争の性質についてです。
普通のITサービスは先行者有利なのですが、どうもAI開発競争については「先行者不利」となっている部分があります。先行者が頑張ってAIを開発しても、その優位性を保っている部分でAIから利益を得ることはほとんどの場合はできず、むしろ自分たちが発展させたAI技術により、後発事業者が追いついてきてユーザーが流出してしまうということがずっと起きているように思われます。
先ほどのスケーリング則により、最先端のAIというのはとても大きなニューラルネットワークの塊で、学習時のみならず、運用コストも膨大です。普通のITサービスは、一旦サービスが完成してしまえば、ユーザーが増えることによるコスト増加は大したことがないのですが、最先端の生成AIは単なる個別ユーザーの「ありがとうございます」「どういたしまして」というチャットですら、膨大な電力コストがかかる金食い虫です。3ドル払って1ドル稼ぐと揶揄されているように、基本的にはユーザーが増えれば増えるほど赤字です。「先端生成AIを開発し、純粋に生成AIを使ったプロダクトから利益を挙げ続ける」というのは、現状まず不可能です。仮に最先端のAIを提供している間に獲得したユーザーが固定ユーザーになってくれれば先行者有利の構図となり、その開発・運営コストも報われるのですが、現状の生成AIサービスを選ぶ基準は純粋に性能であるため、他の機関が性能で上回った瞬間に大きなユーザー流出が起きます。現状の生成AIサービスはSNSのように先行者のネットワーク効果が働かないため、常に膨大なコストをかけて性能向上レースをしなければユーザー維持ができません。しかも後発勢は、先行者が敷いた研究のレールに乗っかって低コストで追いつくことができます。
生成AI開発競争では以上の、
・スケーリング則などの存在により、基本的には札束戦争
・生成AIサービスは現状お金にならない
・生成AI開発の先行者有利は原則存在しない
と言う大前提を理解しておくと、読み解きやすいかと思います。
(繰り返しですがこれは一般向けの説明で、実際に現場で開発している開発者は、このような文章では表現できないほどの努力をしています。)
OpenAIが生成AI開発において(先週まで)リードを保っていた源泉となる強みは、とにかく以下に集約されると思います。
・スケーリングの重要性に最初に気付き、自己回帰型LLMという単なる「言語の穴埋め問題がとても上手なニューラルネットワーク」(GPTのこと)に兆レベルの予算と、数年という(AI界隈の基準では)気が遠くなるような時間を全ベットするという狂気を先行してやり、ノウハウ、人材の貯金があった
・極めてストーリー作りや世論形成がうまく、「もうすぐ人のすべての知的活動ができるAGIが実現する。それを実現する技術を持っているのはOpenAIのみである」という雰囲気作りをして投資を呼び込んだ
前者については、スケーリングと生成AIという、リソース投下が正義であるという同じ技術土俵で戦うことになる以上、後発でも同レベルかそれ以上の予算をかけられる機関が他にいれば、基本的には時間経過とともにOpenAIと他の機関の差は縮みます。後者については、OpenAIがリードしている分には正当化されますが、一度別の組織に捲られると、特に投資家層に対するストーリーの維持が難しくなります。
一方のGoogleの強みは以下だと思います。
・投資マネーに頼る必要なく、生成AI開発と応用アプリケーションの赤字があったとしても、別事業のキャッシュで相殺して半永久的に自走できる
・生成AIのインフラ(TPU、クラウド事業)からAI開発、AIを応用するアプリケーション、大量のユーザーまですべてのアセットがすでに揃っており、各段階から取れるデータを生かして生成AIの性能向上ができる他、生成AIという成果物から搾り取れる利益を最大化できる
これらの強みは、生成AIのブーム以前から、AIとは関係なく存在する構造的なものであり、単に時間経過だけでは縮まらないものです。序盤はノウハウ不足でOpenAIに遅れをとることはあっても、これは単に経験の蓄積の大小なので、Googleの一流開発者であれば、あとは時間の問題かと思います。
(Googleの強みは他にももっとあるのですが、流石に長くなりすぎるので省略)
まとめると、
生成AIの性能は、基本的にスケーリング則を背景にAI学習のリソース投下の量に依存するが、これは両者であまり差がつかない。OpenAIは先行者ではあったが、AI開発競争の性質上、先行者利益はほとんどない。OpenAIの強みは時間経過とともに薄れるものである一方、Googleの強みは時間経過で解消されないものである。OpenAIは自走できず、かつストーリーを維持しない限り、投資マネーを呼び込めないが、一度捲られるとそれは難しい。一方、GoogleはAIとは別事業のキャッシュで自走でき、OpenAIに一時的に負けても、長期戦でも問題がない。ということになります。
では、OpenAIの勝利条件があるとすれば、それは以下のようなものになると思います。
・OpenAIが本当に先行してAGI開発に成功してしまう。このAGIにより、研究開発や肉体労働も含むすべての人間の活動を、人間を上回る生産性で代替できるようになる。このAGIであらゆる労働を行なって収益をあげ、かつそれ以降のAIの開発もAGIが担うことにより、AIがAIを開発するループに入り、他の研究機関が原理的に追いつけなくなる(OpenAIに関する基本的なストーリーはこれ)
・AGIとまではいかなくとも人間の研究力を上回るAIを開発して、研究開発の進捗が著しく他の機関を上回るようになる
・ネットワーク効果があり先行者有利の生成AIサービスを作り、そこから得られる収益から自走してAGI開発まで持っていく
・奇跡的な生成AIの省リソース化に成功し、現在の生成AIサービスからも収益が得られるようになる
・生成AI・スケーリング則、あるいは深層学習とは別パラダイムのAI技術レースに持ち込み技術を独占する(これは現在のAI研究の前提が崩れ去るので、OpenAI vs Googleどころの話ではない)
・Anthropicのように特定領域特化AIを作り、利用料金の高さを正当化できる価値を提供する
最近のOpenAIのSora SNSや、検索AI、ブラウザ開発などに、この辺の勝利条件を意識したものは表れているのですが、今のところ成功はしていないのではないかと思います。省リソース化に関しては、多分頑張ってはいてたまに性能ナーフがあるのはこれの一環かもしれないです。とはいえ、原則性能の高さレースをやっている時にこれをやるのはちょっと無理。最後のやつは、これをやった瞬間にAGIを作れる唯一のヒーローOpenAIの物語が崩れるのでできないと思います。
最後に今回のGemini3.0やNano Banana Pro(実際には二つは独立のモデルではなく、Nano Bananaの方はGemini3.0の画像出力機能のようですが)に関して研究上重要だったことは、事前学習のスケーリングがまだ有効であることが明らかになったことだと思います。
ここまでひたすらスケーリングを強調してきてアレですが、実際には2024年後半ごろから、データの枯渇によるスケーリングの停滞が指摘されていること、また今年前半に出たスケーリングの集大成で最大規模のモデルと思われるGPT-4.5が失敗したことで、単純なスケーリングは成り立たなくなったとされていました。その一方で、
去年9月に登場したOpenAIのo1やDeepSeekによって、学習が終わった後の推論時スケーリング(生成AIが考える時間を長くする、AIの思考過程を長く出力する)が主流となっていたのが最近です。
OpenAIはそれでもGPT-5開発中に事前学習スケーリングを頑張ろうとしたらしいのですが、結局どれだけリソースを投下しても性能が伸びないラインがあり、諦めたという報告があります。今回のGemini3.0に関しては、関係者の発言を見る限り、この事前学習のスケーリングがまだ有効であり、OpenAIが直面したスケーリングの限界を突破する方法を発見していることを示唆しています。
これはもしかしたら、単なるお金をかけたスケーリングを超えて、Googleの技術上の「秘伝のタレ」になる可能性もあり、上記で書いた以上の強みを今回Googleが手にした可能性もあると考えています。
本当はもっと技術的に細かいことも書きたいのですが、基本的な考えは以上となります。色々と書いたものの、基本的には両者が競争してもらうことが一番技術発展につながるとは思います! November 11, 2025
5RP
【AIスライド革命|SlideBox】
ついに公開します!
3ヶ月かけて開発してきた
新世代スライド生成AI 『SlideBox』 の
テストユーザー募集(無料)を本日より開始します🔥
◆ NanoBanana Proで作ったスライドを
アップロード → 自動解析 → “要素ごとに可動化”
◆ 文字化け補正
◆ レイアウト崩れの防止
◆ ドラッグ&ドロップ編集
◆ そして 0→1のスライドAI生成 にも対応
“クライアント提出レベル”の倭国向けデザインを
AIが一発で生み出せるところまで、今後さらに進化させていきます。
資料作成のワークフローを根本から変えにいきます。
そして今回は──
いいね & リツイートしてくださった方に、
テストユーザー限定DiscordのURLをお送りします。
早期から触っていただき、気づいた点をフィードバックいただけると大変助かります。
皆さんと一緒に最高のプロダクトへ仕上げていきます。
これからもよろしくお願いします。 November 11, 2025
5RP
読者に手描きと誤認させて生成AI漫画を買わせるのは普通に法に関わってくるのと信用問題なんだって、そろそろ出版社も気づいたほうがいいよ……
読者はゴミをお金出して買いたくないからね……
あと生成AI絵に著作権がないことをもっと深刻に考えたほうがいいのでは https://t.co/Avsmykab7v November 11, 2025
4RP
生成AI出力かどうかを見極めるAIや、許諾を得たデータのみ使用している医療用AIなんかはいいと思うんですけどね。
9割水増しで爆散したオルツみたいなところに助成金出すのはもう勘弁して欲しいですね… https://t.co/eiY8v3a15s November 11, 2025
4RP
何度も説明してますが、僕はすでにプロット壁打ちでAIを使ってます。
日常でも普通に使ってます。
生成AIで作画はしてませんが、資料出しには使ってます。
俺のなおきはわからんけど森川先生はそもそもフルアナログなので使ってないと思います。
とはいえ僕も含めて3人とも現役のクリエイターなので何も調べてないということはありません。
ただ引っ掻き回してるという印象与えてしまったことは申し訳ないです。
僕はただAIで何ができるかを知ってほしいかっただけでした。
りんごさんの言う情勢というのは、AIが世界的に禁忌になったりとかですかね?
たしかにそんな未来もくるかもしれませんね。その時は使うのをやめます。
重ね重ね不安にさせてしまい申し訳ありませんでした。 November 11, 2025
4RP
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。



