ict
0post
2025.12.08
:0% :0% (40代/男性)
ictに関するポスト数は前日に比べ35%減少しました。男性の比率は11%増加し、本日も40代男性の皆さんからのポストが最も多いです。前日は「ev」に関する評判が話題でしたが、本日話題になっているキーワードは「絶対零度~情報犯罪緊急捜査~」です。
人気のポスト ※表示されているRP数は特定時点のものです
🚨 第10話ご視聴ありがとうございました! 🚨
大規模サイバー攻撃に立ち向かうDICTの姿、
感想は『 #絶対零度 』で教えてください💬
1〜3話・最新話はTVer見逃し配信中🧊
https://t.co/fYwoJ3Rxlj
.--- --- ..- .... .- -.
『絶対零度 〜情報犯罪緊急捜査〜』
毎週月曜よる9時放送中 December 12, 2025
59RP
做了一个简化版的交易系统逻辑总结
作用:识别市场从趋势到震荡再到突破的完整生命周期,并在每个阶段采用策略。
以下是数学语言和代码👇:
(代码太长了,删了一部分,可以根据数学语言自己推)
价格序列与技术指标:
Pt=第t期收盘价Pt=第t期收盘价
Ht,Lt,Ot,Vt=最高价、最低价、开盘价、成交量Ht,Lt,Ot,Vt=最高价、最低价、开盘价、成交量
ATRt=1n∑i=0n−1TRt−iATRt=n1i=0∑n−1TRt−i
其中:TRt=max(Ht−Lt,∣Ht−Pt−1∣,∣Lt−Pt−1∣)TRt=max(Ht−Lt,∣Ht−Pt−1∣,∣Lt−Pt−1∣)
箱体结构参数:
BoxHigh=maxi∈[t−W,t]HiBoxHigh=i∈[t−W,t]maxHi
BoxLow=mini∈[t−W,t]LiBoxLow=i∈[t−W,t]minLi
BoxHeight=BoxHigh−BoxLowBoxHeight=BoxHigh−BoxLow
建议窗口期 W=30∼50W=30∼50 根K线。
相对位置函数:
PositionRatiot=Pt−BoxLowBoxHeightPositionRatiot=BoxHeightPt−BoxLow
分层结构:
Leveli=BoxLow+i×BoxHeight4,i∈{0,1,2,3,4}Leveli=BoxLow+i×4BoxHeight,i∈{0,1,2,3,4}
多维度震荡识别系统
震荡评分函数
构建四维评分体系来量化震荡状态:
ConsolidationScore=w1⋅Stime+w2⋅Sspace+w3⋅Svolatility+w4⋅SvolumeConsolidationScore=w1⋅Stime+w2⋅Sspace+w3⋅Svolatility+w4⋅Svolume
权重建议:w1=0.35,w2=0.30,w3=0.20,w4=0.15w1=0.35,w2=0.30,w3=0.20,w4=0.15
时间维度评分
整理时间比率:
Rtime=TconsolidationTprevious_trendRtime=Tprevious_trendTconsolidation
时间评分函数:
Stime={0.2if Rtime<0.50.5if 0.5≤Rtime<1.00.8if 1.0≤Rtime<2.01.0if Rtime≥2.0Stime=⎩⎨⎧0.20.50.81.0if Rtime<0.5if 0.5≤Rtime<1.0if 1.0≤Rtime<2.0if Rtime≥2.0
空间维度评分
边界测试频率:
TestFrequency=∑i=t−Nt1(∣Pi−BoxEdge∣<ϵ)NTestFrequency=N∑i=t−Nt1(∣Pi−BoxEdge∣<ϵ)
其中 ϵ=0.02×BoxHeightϵ=0.02×BoxHeight(边界容差)
箱体强度评分:
Sspace={1.0if UpperTests≥3∧LowerTests≥3∧Breaks=00.7if TotalTests≥4∧Breaks≤10.4if TotalTests≥2∧Breaks≤20otherwiseSspace=⎩⎨⎧1.00.70.40if UpperTests≥3∧LowerTests≥3∧Breaks=0if TotalTests≥4∧Breaks≤1if TotalTests≥2∧Breaks≤2otherwise
波动率维度评分
波动率收敛指标:
VolatilityRatio=ATRcurrentATRtrendVolatilityRatio=ATRtrendATRcurrent
波动率评分:
Svolatility={1.0if VolatilityRatio<0.50.7if 0.5≤VolatilityRatio<0.70.4if 0.7≤VolatilityRatio<0.90if VolatilityRatio≥0.9Svolatility=⎩⎨⎧1.00.70.40if VolatilityRatio<0.5if 0.5≤VolatilityRatio<0.7if 0.7≤VolatilityRatio<0.9if VolatilityRatio≥0.9
成交量维度评分
量能萎缩度:
VolumeDecay=1−Volume‾consolidationVolume‾trendVolumeDecay=1−VolumetrendVolumeconsolidation
成交量评分:
Svolume=min(VolumeDecay×2,1.0)Svolume=min(VolumeDecay×2,1.0)
状态判断逻辑
MarketState={Consolidationif ConsolidationScore>0.65Trendif ConsolidationScore<0.35UncertainotherwiseMarketState=⎩⎨⎧ConsolidationTrendUncertainif ConsolidationScore>0.65if ConsolidationScore<0.35otherwise
三状态交易系统设计
状态机框架
定义三个核心状态:
Ω={Strend,Sconsolidation,Sbreakout}Ω={Strend,Sconsolidation,Sbreakout}
状态转移条件:
Strend→SconsolidationStrend→Sconsolidation:
TrendStrength<0.3∧ConsolidationScore>0.5TrendStrength<0.3∧ConsolidationScore>0.5
Sconsolidation→SbreakoutSconsolidation→Sbreakout:
BreakoutStrength>0.7∧ValidBreakout=TrueBreakoutStrength>0.7∧ValidBreakout=True
区间交易策略(震荡状态)
做空信号生成:
ShortSignalrange={1if PositionRatio>0.75∧TopReversalSignal=True∧RSI>60∧Volume<Volume‾20×0.90otherwiseShortSignalrange=⎩⎨⎧10if PositionRatio>0.75∧TopReversalSignal=True∧RSI>60∧Volume<Volume20×0.9otherwise
顶部反转识别:
TopReversalSignal={Trueif UpperShadowRatio>0.4∧Close<Open∧Close<EMA13FalseotherwiseTopReversalSignal=⎩⎨⎧TrueFalseif UpperShadowRatio>0.4∧Close<Open∧Close<EMA13otherwise
其中:UpperShadowRatio=Ht−max(Ot,Pt)Ht−LtUpperShadowRatio=Ht−LtHt−max(Ot,Pt)
仓位与风控:
Positionrange=Capital×RiskRatio×0.5∣EntryPrice−StopLoss∣Positionrange=∣EntryPrice−StopLoss∣Capital×RiskRatio×0.5
StopLossrange=BoxHigh×(1+SafetyMargin)StopLossrange=BoxHigh×(1+SafetyMargin)
建议 SafetyMargin=0.04∼0.05SafetyMargin=0.04∼0.05
突破跟随策略(突破状态)
突破强度评分:
BreakoutStrength=0.4⋅Sprice+0.3⋅Svolume+0.3⋅SpersistenceBreakoutStrength=0.4⋅Sprice+0.3⋅Svolume+0.3⋅Spersistence
各分量计算:
价格突破深度:
Sprice=min(∣BoxLow−Pt∣BoxLow×10,1.0)Sprice=min(BoxLow∣BoxLow−Pt∣×10,1.0)
成交量放大度:
Svolume=min(VtV‾20−1,1.0)Svolume=min(V20Vt−1,1.0)
持续性确认:
Spersistence=∑i=021(Closet−i<BoxLow)3Spersistence=3∑i=021(Closet−i<BoxLow)
有效突破判断:
ValidBreakout={Trueif BreakoutStrength>0.7∧Pt<BoxLow×0.98∧NoRecentFalseBreak=TrueFalseotherwiseValidBreakout=⎩⎨⎧TrueFalseif BreakoutStrength>0.7∧Pt<BoxLow×0.98∧NoRecentFalseBreak=Trueotherwise
回踩机会识别
回踩窗口定义:
PullbackWindow=[tbreakout,tbreakout+MaxWaitBars]PullbackWindow=[tbreakout,tbreakout+MaxWaitBars]
建议 MaxWaitBars=20MaxWaitBars=20
回踩位置评估:
PullbackRatio=Pt−LowestAfterBreakBoxLow−LowestAfterBreakPullbackRatio=BoxLow−LowestAfterBreakPt−LowestAfterBreak
理想回踩区间:0.382≤PullbackRatio≤0.6180.382≤PullbackRatio≤0.618
回踩做空信号:
ShortSignalpullback={1if t∈PullbackWindow∧PullbackRatio∈[0.382,0.618]∧∣Pt−BoxLow∣<0.03×BoxHeight∧RejectionSignal=True0otherwiseShortSignalpullback=⎩⎨⎧10if t∈PullbackWindow∧PullbackRatio∈[0.382,0.618]∧∣Pt−BoxLow∣<0.03×BoxHeight∧RejectionSignal=Trueotherwise
动态资金分配模型
自适应分配函数
αt=αbase+Δα⋅f(ConsolidationScoret)αt=αbase+Δα⋅f(ConsolidationScoret)
基础分配:
αbase=0.75(保守策略基础占比)αbase=0.75(保守策略基础占比)
动态调整:
Δα=0.2×(1−ConsolidationScoret)Δα=0.2×(1−ConsolidationScoret)
约束条件:0.6≤αt≤0.90.6≤αt≤0.9
资金分配:
Capitalrange=TotalCapital×αtCapitalrange=TotalCapital×αt
Capitalbreakout=TotalCapital×(1−αt)Capitalbreakout=TotalCapital×(1−αt)
代码:
import numpy as np import pandas as pd from dataclasses import dataclass from typing import Optional, Tuple, Dict, List from enum import Enum class MarketState(Enum): TREND_DOWN = "TREND_DOWN" CONSOLIDATION = "CONSOLIDATION" BREAKOUT = "BREAKOUT" UNCERTAIN = "UNCERTAIN" @dataclass class ConsolidationMetrics: """震荡评估指标""" time_score: float space_score: float volatility_score: float volume_score: float total_score: float market_state: MarketState @dataclass class BoxStructure: """箱体结构""" high: float low: float height: float level_075: float level_050: float level_025: float upper_tests: int lower_tests: int duration: int is_valid: bool @classmethod def from_prices(cls, highs: np.ndarray, lows: np.ndarray, prices: np.ndarray, window: int = 50): """从价格数据构建箱体""" box_high = np.max(highs[-window:]) box_low = np.min(lows[-window:]) box_height = box_high - box_low # 计算关键位置 level_075 = box_low + 0.75 * box_height level_050 = box_low + 0.50 * box_height level_025 = box_low + 0.25 * box_height # 计算边界测试次数 epsilon = 0.02 * box_height upper_tests = np.sum(np.abs(prices - box_high) < epsilon) lower_tests = np.sum(np.abs(prices - box_low) < epsilon) # 验证有效性 is_valid = ( box_height / box_low > 0.15 and upper_tests >= 2 and lower_tests >= 2 and len(prices) >= 20 ) return cls( high=box_high, low=box_low, height=box_height, level_075=level_075, level_050=level_050, level_025=level_025, upper_tests=upper_tests, lower_tests=lower_tests, duration=len(prices), is_valid=is_valid ) def get_position_ratio(self, price: float) -> float: """计算价格在箱体中的相对位置""" if self.height == 0: return 0.5 return (price - self.low) / self.height class ConsolidationBreakoutStrategy: """震荡识别与突破策略""" def __init__(self, capital: float = 100000, risk_per_trade: float = 0.02, lookback_period: int = 50): """ 初始化策略 Args: capital: 总资金 risk_per_trade: 单笔风险比例 lookback_period: 回溯周期 """ https://t.co/CclsZvqogq = capital self.risk_per_trade = risk_per_trade self.lookback_period = lookback_period # 核心参数 self.params = { # 震荡识别 'consolidation_threshold': 0.65, 'trend_threshold': 0.35, 'time_weight': 0.35, 'space_weight': 0.30, 'volatility_weight': 0.20, 'volume_weight': 0.15, # 区间交易 'top_threshold': 0.75, 'range_position_ratio': 0.5, 'safety_margin': 0.04, # 突破跟随 'breakout_threshold': 0.7, 'price_offset': 0.02, 'volume_multiplier': 1.5, 'persistence_bars': 3, # 回踩交易 'pullback_max_wait': 20, 'fib_low': 0.382, 'fib_high': 0.618, 'proximity_threshold': 0.03, } # 状态跟踪 self.current_state = MarketState.UNCERTAIN https://t.co/Hl1CpkP62f_structure: Optional[BoxStructure] = None self.trend_start_idx = None self.consolidation_start_idx = None self.breakout_info = None self.alpha = 0.75 # 保守策略资金占比 def calculate_technical_indicators(self, df: pd.DataFrame) -> pd.DataFrame: """计算技术指标""" df['EMA13'] = df['close'].ewm(span=13).mean() df['RSI'] = self._calculate_rsi(df['close'], 14) df['ATR'] = self._calculate_atr(df, 14) df['Volume_MA'] = df['volume'].rolling(20).mean() return df def _calculate_rsi(self, prices: pd.Series, period: int = 14) -> pd.Series: """计算RSI指标""" delta = prices.diff() gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() rs = gain / loss rsi = 100 - (100 / (1 + rs)) return rsi def _calculate_atr(self, df: pd.DataFrame, period: int) -> pd.Series: """计算ATR指标""" high_low = df['high'] - df['low'] high_close = np.abs(df['high'] - df['close'].shift()) low_close = np.abs(df['low'] - df['close'].shift()) tr = np.maximum(high_low, np.maximum(high_close, low_close)) return tr.rolling(period).mean() def evaluate_consolidation(self, df: pd.DataFrame, current_idx: int) -> ConsolidationMetrics: """评估震荡状态""" if current_idx < self.lookback_period: return ConsolidationMetrics(0, 0, 0, 0, 0, MarketState.UNCERTAIN) # 1. 时间维度评分 time_score = self._calculate_time_score(current_idx) # 2. 空间维度评分 space_score = self._calculate_space_score() # 3. 波动率维度评分 volatility_score = self._calculate_volatility_score(df, current_idx) # 4. 成交量维度评分 volume_score = self._calculate_volume_score(df, current_idx) # 综合评分 total_score = ( self.params['time_weight'] * time_score + self.params['space_weight'] * space_score + self.params['volatility_weight'] * volatility_score + self.params['volume_weight'] * volume_score ) # 状态判断 if total_score > self.params['consolidation_threshold']: market_state = MarketState.CONSOLIDATION elif total_score < self.params['trend_threshold']: market_state = MarketState.TREND_DOWN else: market_state = MarketState.UNCERTAIN return ConsolidationMetrics( time_score=time_score, space_score=space_score, volatility_score=volatility_score, volume_score=volume_score, total_score=total_score, market_state=market_state ) def _calculate_time_score(self, current_idx: int) -> float: """计算时间维度评分""" if not self.trend_start_idx or not self.consolidation_start_idx: return 0.2 trend_duration = self.consolidation_start_idx - self.trend_start_idx consolidation_duration = current_idx - self.consolidation_start_idx if trend_duration == 0: return 0.2 time_ratio = consolidation_duration / trend_duration if time_ratio < 0.5: return 0.2 elif time_ratio < 1.0: return 0.5 elif time_ratio < 2.0: return 0.8 else: return 1.0 def _calculate_space_score(self) -> float: """计算空间维度评分""" if not https://t.co/Hl1CpkP62f_structure or not https://t.co/Hl1CpkP62f_structure.is_valid: return 0.0 # 边界测试充分性 total_tests = https://t.co/Hl1CpkP62f_structure.upper_tests + https://t.co/Hl1CpkP62f_structure.lower_tests test_score = min(total_tests / 6, 1.0) # 箱体持续时间 duration_score = min(https://t.co/Hl1CpkP62f_structure.duration / 30, 1.0) return (test_score + duration_score) / 2 def _calculate_volatility_score(self, df: pd.DataFrame, current_idx: int) -> float: """计算波动率维度评分""" if current_idx < 40: return 0.0 # 当前波动率 current_atr = df.iloc[current_idx]['ATR'] # 历史波动率 if self.trend_start_idx and self.consolidation_start_idx: trend_atr = df.iloc[self.trend_start_idx:self.consolidation_start_idx]['ATR'].mean() else: trend_atr = df.iloc[current_idx-40:current_idx-20]['ATR'].mean() if trend_atr == 0: return 0.0 vol_ratio = current_atr / trend_atr if vol_ratio < 0.5: return 1.0 elif vol_ratio < 0.7: return 0.7 elif vol_ratio < 0.9: return 0.4 else: return 0.0 def _calculate_volume_score(self, df: pd.DataFrame, current_idx: int) -> float: """计算成交量维度评分""" if current_idx < 40 or not self.consolidation_start_idx: return 0.0 # 震荡期平均成交量 consolidation_vol = df.iloc[self.consolidation_start_idx:current_idx]['volume'].mean() # 趋势期平均成交量 if self.trend_start_idx: trend_vol = df.iloc[self.trend_start_idx:self.consolidation_start_idx]['volume'].mean() else: trend_vol = df.iloc[current_idx-40:current_idx-20]['volume'].mean() if trend_vol == 0: return 0.0 volume_decay = 1 - (consolidation_vol / trend_vol) return min(volume_decay * 2, 1.0) def update_box_structure(self, df: pd.DataFrame, current_idx: int): """更新箱体结构""" if current_idx < self.lookback_period: return window_data = df.iloc[current_idx-self.lookback_period:current_idx+1] https://t.co/Hl1CpkP62f_structure = BoxStructure.from_prices( window_data['high'].values, window_data['low'].values, window_data['close'].values, window=self.lookback_period ) def detect_top_reversal(self, df: pd.DataFrame, current_idx: int) -> bool: """检测顶部反转信号""" if current_idx < 1: return False current = df.iloc[current_idx] # 上影线比例 range_size = current['high'] - current['low'] if range_size == 0: return False upper_shadow = current['high'] - max(current['open'], current['close']) upper_shadow_ratio = upper_shadow / range_size # 综合条件 is_bearish = current['close'] < current['open'] below_ema = current['close'] < current['EMA13'] return upper_shadow_ratio > 0.4 and is_bearish and below_ema def generate_range_signal(self, df: pd.DataFrame, current_idx: int) -> Optional[Dict]: """生成区间交易信号""" if not https://t.co/Hl1CpkP62f_structure or not https://t.co/Hl1CpkP62f_structure.is_valid: return None current_price = df.iloc[current_idx]['close'] position_ratio = https://t.co/Hl1CpkP62f_structure.get_position_ratio(current_price) # 必须在顶部区域 if position_ratio < self.params['top_threshold']: return None # 检测反转信号 if not self.detect_top_reversal(df, current_idx): return None # RSI条件 rsi = df.iloc[current_idx]['RSI'] if rsi < 60: return None # 成交量条件 volume_ratio = df.iloc[current_idx]['volume'] / df.iloc[current_idx]['Volume_MA'] if volume_ratio > 0.9: return None # 计算交易参数 stop_loss = https://t.co/Hl1CpkP62f_structure.high * (1 + self.params['safety_margin']) position_size = self._calculate_position_size(current_price, stop_loss, 0.5) return { 'signal_type': 'RANGE_SHORT', 'entry_price': current_price, 'stop_loss': stop_loss, 'target1': https://t.co/Hl1CpkP62f_structure.level_050, 'target2': https://t.co/Hl1CpkP62f_structure.level_025, 'position_size': position_size, 'position_ratio': position_ratio, 'reason': f'区间顶部做空 (位置={position_ratio:.2%})' } def calculate_breakout_strength(self, df: pd.DataFrame, current_idx: int) -> float: """计算突破强度""" if not https://t.co/Hl1CpkP62f_structure or current_idx < 20: return 0.0 current_price = df.iloc[current_idx]['close'] # 价格突破深度 price_penetration = abs(https://t.co/Hl1CpkP62f_structure.low - current_price) / https://t.co/Hl1CpkP62f_structure.low price_score = min(price_penetration * 10, 1.0) # 成交量放大 vol_ratio = df.iloc[current_idx]['volume'] / df.iloc[current_idx]['Volume_MA'] volume_score = min(vol_ratio - 1, 1.0) # 持续性确认 persistence_count = 0 for i in range(min(self.params['persistence_bars'], current_idx)): if df.iloc[current_idx - i]['close'] < https://t.co/Hl1CpkP62f_structure.low: persistence_count += 1 else: break persistence_score = persistence_count / self.params['persistence_bars'] # 综合评分 return 0.4 * price_score + 0.3 * volume_score + 0.3 * persistence_score def generate_breakout_signal(self, df: pd.DataFrame, current_idx: int) -> Optional[Dict]: """生成突破信号""" if not https://t.co/Hl1CpkP62f_structure: return None current_price = df.iloc[current_idx]['close'] # 检查突破条件 price_break = current_price < https://t.co/Hl1CpkP62f_structure.low * (1 - self.params['price_offset']) strength = self.calculate_breakout_strength(df, current_idx) strong_enough = strength > self.params['breakout_threshold'] if not (price_break and strong_enough): return None # 记录突破信息 self.breakout_info = { 'timestamp': current_idx, 'price': current_price, 'lowest_after': current_price, 'strength': strength } # 生成信号 stop_loss = https://t.co/Hl1CpkP62f_structure.low * 1.02 position_size = self._calculate_position_size(current_price, stop_loss, 1.0) target = https://t.co/Hl1CpkP62f_structure.low - https://t.co/Hl1CpkP62f_structure.height * 2.0 return { 'signal_type': 'BREAKOUT_SHORT', 'entry_price': current_price, 'stop_loss': stop_loss, 'target1': target, 'target2': target * 0.9, 'position_size': position_size, 'breakout_strength': strength, 'reason': f'突破追空 (强度={strength:.2f})' } def generate_pullback_signal(self, df: pd.DataFrame, current_idx: int) -> Optional[Dict]: """生成回踩信号""" if not self.breakout_info: return None # 检查时间窗口 bars_since_breakout = current_idx - self.breakout_info['timestamp'] if bars_since_breakout > self.params['pullback_max_wait']: return None current_price = df.iloc[current_idx]['close'] # 计算回踩比例 lowest_after = self.breakout_info['lowest_after'] if https://t.co/Hl1CpkP62f_structure.low == lowest_after: return None pullback_ratio = (current_price - lowest_after) / (https://t.co/Hl1CpkP62f_structure.low - lowest_after) # 检查回踩区间 in_fib_range = (self.params['fib_low'] <= pullback_ratio <= self.params['fib_high']) near_resistance = (abs(current_price - https://t.co/Hl1CpkP62f_structure.low) < self.params['proximity_threshold'] * https://t.co/Hl1CpkP62f_structure.height) if not (in_fib_range and near_resistance): return None # 检测阻力受阻 current = df.iloc[current_idx] range_size = current['high'] - current['low'] if range_size > 0: upper_shadow = current['high'] - max(current['open'], current['close']) rejection = (upper_shadow / range_size > 0.4 and current['close'] < https://t.co/Hl1CpkP62f_structure.low) else: rejection = False if not rejection: return None # 生成信号 stop_loss = https://t.co/Hl1CpkP62f_structure.low * 1.015 position_size = self._calculate_position_size(current_price, stop_loss, 0.8) target = https://t.co/Hl1CpkP62f_structure.low - https://t.co/Hl1CpkP62f_structure.height * 1.5 return { 'signal_type': 'PULLBACK_SHORT', 'entry_price': current_price, 'stop_loss': stop_loss, 'target1': target, 'target2': target * 0.95, 'position_size': position_size, 'pullback_ratio': pullback_ratio, 'reason': f'回踩做空 (回踩={pullback_ratio:.2%})' } def _calculate_position_size(self, entry_price: float, stop_loss: float, multiplier: float = 1.0) -> float: """计算仓位大小""" risk_amount = https://t.co/CclsZvqogq * self.risk_per_trade stop_distance = abs(entry_price - stop_loss) if stop_distance == 0: return 0 base_position = risk_amount / stop_distance adjusted_position = base_position * multiplier # 仓位上限 max_position = (https://t.co/CclsZvqogq * 0.3) / entry_price return min(adjusted_position, max_position) def update_capital_allocation(self, consolidation_score: float): """更新资金分配""" self.alpha = 0.75 + 0.15 * (1 - consolidation_score) self.alpha = np.clip(self.alpha, 0.6, 0.9) def backtest(self, df: pd.DataFrame) -> Dict: """策略回测""" # 计算技术指标 df = self.calculate_technical_indicators(df) signals = [] state_history = [] for i in range(self.lookback_period, len(df)): # 更新箱体结构 self.update_box_structure(df, i) # 评估震荡状态 metrics = self.evaluate_consolidation(df, i) self.current_state = https://t.co/aYrw6Qe9xL_state # 记录状态 state_history.append({ 'timestamp': df.iloc[i].get('timestamp', i), 'price': df.iloc[i]['close'], 'state': self.current_state.value, 'consolidation_score': https://t.co/bneIHJbMXx_score, 'box_valid': https://t.co/Hl1CpkP62f_structure.is_valid if https://t.co/Hl1CpkP62f_structure else False }) # 更新资金分配 self.update_capital_allocation(https://t.co/bneIHJbMXx_score) # 生成交易信号 signal = None if self.current_state == MarketState.CONSOLIDATION: signal = self.generate_range_signal(df, i) elif self.current_state == MarketState.TREND_DOWN: signal = self.generate_breakout_signal(df, i) # 检查回踩机会 if not signal: signal = self.generate_pullback_signal(df, i) if signal: signal['timestamp'] = df.iloc[i].get('timestamp', i) signal['current_price'] = df.iloc[i]['close'] signal['market_state'] = self.current_state.value signal['alpha'] = self.alpha signals.append(signal) December 12, 2025
5RP
#pixelart #ドット絵 #dotpict #wip
アニメ作品は余り進んでいない。こっちは、まずまず進んだ感じだが体幹が不自然な気がする。やはり、ある程度骨格を意識して描いて行かないとダメだな。
それすら理解出来ていないので、違和感を潰していく感じでしか描けないけど😅
それでは、お休みなさい😴 https://t.co/kAvgjxn7J1 https://t.co/1sdCfIl3D3 December 12, 2025
3RP
Sky株式会社キャリア採用さま
(@Sky_career_ )
その場で当たるキャンペーンにて
Amazonギフト券
1,000円分が当たりました🎯
誠にありがとうございます🙇♀️
各分野の担当様からのポストが
大変勉強になります📚
これからも応援しております📣
#12月ICTキャリアアップ応援キャンペーン https://t.co/xMDWbN8T1Y December 12, 2025
3RP
#NICT レジリエントICT研究センター 井上研究センター長が、#パンサー尾形さん とせんだいメディアテークで対談しました。対談の内容は後日となりますので、このアカウントをフォロワーしてお待ち下さい。乞うご期待!尾形さんは、世界のためのすごい活動なので、どんどんPRしたいとのこと。サンキュー! December 12, 2025
3RP
【先生方、席替えの苦痛が今日で終わる】
「男女交互にしたい」「視力悪い子は前」「相性悪い子は離して」
毎回何時間もかかってた席替え、もうやらなくていいです
Google Gemini搭載・完全無料の席替え自動作成ツール作りました
名簿Excel貼るだけ→配慮事項✅→席替え開始で座席表が決まる
→印刷用2種出力(児童側教師側の2視点)
→即完成!
登録不要・ブラウザで今すぐ使える
https://t.co/KimziqsW8Q
「これで席替え5分で終わった」
「相性考慮まで完璧すぎる」って声多数…!
いいね&リポストで他の先生にも救いを届けませんか?#教師の味方 #席替え #無料ツール #GoogleGemini #教育ICT December 12, 2025
2RP
自分の(人生後半の)ライフワークは、この
「個人塾に向けてできることをしていく」かと思っています。
地域の個人塾ができることは大きいと思っていますし、なにより私が尖っている塾が好きなのです。
塾団体の役員として、映像授業講師として、ICT好きとして、できることを少しずつ進めていきます。 https://t.co/OkY4lzCJ3f December 12, 2025
1RP
12/8は1813年
ベートーヴェンの交響曲第7番が自身の指揮で初演された日
好評だったが,同時初演のウェリントンの勝利に人気があったそうです
#ピエール・モントゥー生誕150年
ロンドン響との米RCA-VictrolaのLP
この録音が大好きで
溌剌としてテンポ良く,爽快感溢れる名演です https://t.co/CzlQ5Pfuc7 December 12, 2025
1RP
歩くのも遅いし、給食も遅い。
でも、周りの先生たちの動きは本当に異常。
速く動かないと崩壊する現場で、
全員が無理矢理スピードを上げているだけ。
授業、給食、連絡帳、保護者対応、トラブル処理、ICT対応……
これを毎日ノンストップ。
それを外からは、
「夏休み長いんでしょ?」
「世間知らずなんだよ」
の一言で切って捨てられる。
いやいやいやいや。
すごい仕事量を最速でまわしている人たちだよ。
だって
遅くしたら仕事が残るだけだから。
余白ゼロの現場が、先生を「高速で動く生き物」にしている。
この働き方で、優秀な人が教職を選ぶと本気で思っているのだろうか。
疲れた人から辞めていくのは当たり前。
むしろ、残っている人が奇跡。
だから言う。
もう制度を根本から変えないと、教育は崩壊する。
私が考えた本気の改善案は以下の5点。↓ December 12, 2025
1RP
③ ICT管理者を 常駐させる(全国義務化レベル)
先生が毎日「Wi-Fiつかない」「固まった」と走り回るの、異常。
授業準備よりタブレット待機時間のほうが長いとか、もうおかしい。
ICTは専門家に任せるべき。
④ 事務スタッフを増やし先生の仕事から事務仕事を全部外す
出欠・集金・周知文書……
これ全部やらされる国、倭国だけ。
授業に集中させない国に、質の高い教育は作れない。
⑤ メンタル休暇を普通に取得できる仕組みを作る
代わりがいないから休めない。
休めないから壊れる。
壊れたらもう戻れない。
これを放置しておいて「教師が弱い」なんて、笑わせないでほしい。
代替教員の常設化はもう義務。
先生は世間知らずなんかじゃない。↓ December 12, 2025
1RP
12/6(土)に開催された「輝け!倭国の大学生選手権」決勝戦において、ICTサポーターサークルが優秀賞を受賞しました!
予選を通過した全国9大学が出場し、デジタルデバイド解消に向けた取り組みやアイデアを発表しました。その中で本学の提案が高く評価されました!
皆様応援ありがとうございました。 https://t.co/we7jkjotbA https://t.co/CPpwjUhG7i December 12, 2025
1RP
Sky株式会社様 @Sky_corporate
ICT業界応援CPにて
アマゾンギフト5,000円分をいただきました🌟✨
自社のPC管理ソフト・学校用ソフトを作りながら
車や家電のシステム開発も請け負うIT企業様です✨
現在もCP開催されてます!
ぜひチェックを✅🩵
ありがとうございました💝✨
#テラの当選報告 https://t.co/pY1agh5MUL December 12, 2025
1RP
今日の32ピクセルお題「うさぎ」
澄ました顔して脳内は好きな食べ物の事しか考えてなさそうで可愛い
#dotpict #pixelart #ドット絵 https://t.co/2j8iINwURU December 12, 2025
1RP
ピクトアップ〈PICT-UP〉158号 2026年2月号
12月11日発売
連続ドラマ初主演となるテレビ東京 ドラマ25『俺たちバッドバーバーズ』(26年1月9日スタート)が控える
中島歩さんのポートレイト&インタビューを掲載。
ポートレイトを誌面から1点公開。
撮影は浜田啓子さんです。
#中島歩
#オレババ https://t.co/fi8c7pHLaz December 12, 2025
1RP
人を宿泊させることに関する法律は、旅館業法(昭和23年(1948年)7月12日に公布され、同年7月15日に施行)1952年にGHQが解散だから、まだ倭国が占領されていた時代。
その後昭和32年に、小学校の周辺概ね100メートル以内の旅館を不許可に出来ると言う「規制」をいれ、
昭和43年に都市計画法により住居専用地区には、旅館が出来ないとする「規制」をいれ、その後禁止とする地区に文教地区を加える「規制」を行い。
和45年には玄関帳場(フロント)の設備基準を入れ、事実上の有人管理という「規制」を行ってきた。
ところが、平成28年からの数年間で、これらの規制を撤廃し、住専地域でや学校の隣接地でも、旅館ではない「民泊」なるものでは営業を可能とし、旅館においても、「鮮明」な画像で人の出入りを確認できる「ICT」なるもので、無人管理も可能とした。
60年以上の時を経て、住民の暮らしを守ろうとした、「規制」を取っ払っておいて、今更見直しの議論といわれてもねぇ。国はちゃんと責任とれよ。
京都の民泊1000軒超え 暮らし優先で見直し議論を(京都新聞) https://t.co/B6oToZ3D0s December 12, 2025
社内SE・DX担当・情シスのスタンスでICT支援員をやってるけど、校内・校外問わず調整ごとは多いし、教員のレベルや学校の実態に即した既存のシステム(サービス)の活用提案、製品・サービスの選定などもしてる。
それでも、給料は大卒初任給並みのまま昇給なし。
教育委員会は資格の取得を求めるけど、その見返りは一切ないし、そもそもその資格を持ってる人間なんて労働市場にはほとんどいない。
学校の先生も教育委員会も、IT系人材の給与の相場を全然わかってない。
「ITの分野で生徒や先生のために微に入り細に入りいろんなことをしている人材が、相場より安い給料で確保できている」ということの有り難みを感じないまま、非教員ということで低く見たり、薄給で働かせようとしたりする。
まあ、私みたいなスタンスではなく「定型業務だけしてればいい」というマインドで、ITの専門的知識がそれほどない状態で働いているのが、世のICT支援員の大勢を占めるんだろうと思う。
だから、給与相場が低くても文句を言わずに働いているんでしょうけど。
私はもうイヤ。
早く、こんな境遇から抜け出したい 🤢 December 12, 2025
毎年買ってるTICTさんの福袋
今年も2つ注文させていたただきました😊
今回こそハガキ入っててくれ!🙏
#TICT福袋 https://t.co/WDWm9M1EOA December 12, 2025
<ポストの表示について>
本サイトではXの利用規約に沿ってポストを表示させていただいております。ポストの非表示を希望される方はこちらのお問い合わせフォームまでご連絡下さい。こちらのデータはAPIでも販売しております。





